Nonlinear buckling analysis of higher-order shear deformable FG-CNTRC plates stiffened by oblique FG-CNTRC stiffeners

نویسندگان

چکیده

The nonlinear buckling analysis of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates subjected to axial compression load is analytically examined in this paper. Assuming that the FG-CNTRC are stiffened by an oblique stiffener system. Reddy’s higher-order shear deformation plate theory (HSDPT) with geometrical nonlinearities von Kármán applied establish basic formulations. Moreover, smeared technique successfully improved for deformable anisotropic system using a homogeneous model beam. Galerkin’s method used achieve expressions critical loads and postbuckling load-deflection curves explicit form. numerical values display influences stiffeners, material, properties on response plates.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling and Post-buckling Analysis of FG-CNTRC Beams: An Exact Closed Form Solution

The present work derives the exact analytical solutions for buckling and post-buckling analysis of nano-composite beams reinforced by single-walled carbon nanotubes (SWCNTs) based on the Euler-Bernoulli beam theory and principle of virtual work. The reinforcements are considered to be aligned in the polymeric matrix either unifor...

متن کامل

The Effect of Elastic Foundations on the Buckling Behavior of Functionally Graded Carbon Nanotube-Reinforced Composite Plates in Thermal Environments Using a Meshfree Method

The buckling behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates resting on Winkler-Pasternak elastic foundations under in-plane loads for various temperatures is investigated using element-free Galerkin (EFG) method based on first-order shear deformation theory (FSDT). The modified shear correction factor is used based on energy equivalence principle. Carbon ...

متن کامل

Thermal Buckling of Nanocomposite Stiffened Cylindrical Shells Reinforced by Functionally Graded Wavy Carbon Nanotubes with Temperature-Dependent Properties

We study the thermal buckling behavior of cylindrical shells reinforced with Functionally Graded (FG) wavy Carbon NanoTubes (CNTs), stiffened by stringers and rings, and subjected to a thermal loading. The equilibrium equations of the problem are built according to the Third-order Shear Deformation Theory (TSDT), whereas the stiffeners are modeled as Euler Bernoulli beams. Different types of FG...

متن کامل

Buckling Analysis of Embedded Nanosize FG Beams Based on a Refined Hyperbolic Shear Deformation Theory

In this study, the mechanical buckling response of refined hyperbolic shear deformable (FG) functionally graded nanobeams embedded in an elastic foundation is investigated based on the refined hyperbolic shear deformation theory. Material properties of the FG nanobeam change continuously in the thickness direction based on the power-law model. To capture small size effects, Eringen’s nonlocal e...

متن کامل

the effect of carbon nanotube waviness and aspect ratio on the buckling of cross-ply laminated fg-cntrc plates using efg method

this article deals with the buckling analysis of perfectly bonded cross-ply laminated composite plates reinforced by wavy carbon nanotubes (cnts) under in-plane loads using element free galerkin (efg) method based on first-order shear deformation theory (fsdt). the wavy single-walled cnts and poly-co-vinylene are used for the fibers and the matrix, respectively. the cnt fibers are distributed i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Vietnam Journal of Mechanics

سال: 2022

ISSN: ['0866-7136']

DOI: https://doi.org/10.15625/0866-7136/17933